Connect with us

Technology

New ‘undetectable’ material allows for optimal health monitoring

Published

on

Researchers have designed a soft, breathable and stretchable material that is nearly undetectable on a person’s skin, allowing for optimal long-term health monitoring.

With cancer, diabetes and heart disease among the leading causes of disability and death in the United States, scientists have been developing an in-home monitoring solution that could detect these chronic diseases early and lead to timely interventions. 

Zheng Yan and a team of researchers at the University of Missouri have created an ultra soft ‘skin-like’ material — that’s both breathable and stretchable — for use in the development of an on-skin, wearable bioelectronic device capable of simultaneously tracking multiple vital signs such as blood pressure, electrical heart activity and skin hydration.

Made from a liquid-metal elastomer composite, the material’s key feature is its skin-like soft properties.

Its integrated antibacterial and antiviral properties can also help prevent harmful pathogens from forming on the surface of the skin underneath the device during extended use.

Yan, an assistant professor in the Department of Chemical and Biomedical Engineering and the Department of Mechanical and Aerospace Engineering, explained: “Our overall goal is to help improve the long-term biocompatibility and the long-lasting accuracy of wearable bioelectronics through the innovation of this fundamental porous material which has many novel properties. 

“It is ultra soft and ultra-stretchable, so when the device is worn on the human body, it will be mechanically imperceptible to the user. You cannot feel it, and you will likely forget about it. This is because people can feel about 20 kilopascals or more of pressure when something is stretched on their skin, and this material creates less pressure than that.”

He added: “We call it a mechanical and electrical decoupling, so when the material is stretched, there is only a small change in the electrical performance during human motion, and the device can still record high-quality biological signals from the human body.”

While other researchers have worked on similar designs for liquid-metal elastomer composites, Yan said the MU team has a novel approach because the breathable “porous” material they developed can prevent the liquid metal from leaking out when the material is stretched as the human body moves.

The work builds on the team’s existing proof of concept, as demonstrated by their previous work including a heart monitor currently under development. In the future, Yan hopes the biological data gathered by the device could be wirelessly transmitted to smartphone or similar electronics for future sharing with medical professionals.

 

Technology

Study detects cognitive changes in older drivers using in-vehicle sensors

Published

on

The forward-facing camera is mounted under the rearview mirror and is used to record events external to the vehicle. Photo credit: Jinwoo Jang, Ph.D., FAU College of Engineering and Computer Science

A new, in-vehicle sensing system could provide the first step toward widespread, low-cost early warnings of cognitive change among older drivers in the US and elsewhere.

An estimated 4 to 8 million older adults with mild cognitive impairment are currently driving in the United States, and one-third of them will develop dementia within five years. Individuals with progressive dementias are eventually unable to drive safely, yet many remain unaware of their cognitive decline.

Currently, screening and evaluation services for driving can only test a small number of individuals with cognitive concerns, missing many who need to know if they require treatment.

Nursing, engineering and neuropsychology researchers at Florida Atlantic University are testing and evaluating a readily and rapidly available, unobtrusive in-vehicle sensing system they have developed.

In their study, published in the journal BMC Geriatrics, they systematically examine how this system could detect anomalous driving behaviour indicative of cognitive impairment.

Few studies have reported on the use of continuous, unobtrusive sensors and related monitoring devices for detecting subtle variability in the performance of highly complex everyday activities over time. This significant proportion of older drivers constitutes a previously unexplored opportunity to detect cognitive decline.

Ruth Tappen, Ed.D., principal investigator, senior author and the Christine E. Lynn Eminent Scholar and Professor, FAU Christine E. Lynn College of Nursing, said: “The neuropathologies of Alzheimer’s disease have been found in the brains of older drivers killed in motor vehicle accidents who did not even know they had the disease and had no apparent signs of it.

“The purpose of our study arose from the importance of identifying cognitive dysfunction as early and efficiently as possible. Sensor systems installed in older drivers’ vehicles may detect these changes and could generate early warnings of possible changes in cognition.”

The study uses a naturalistic longitudinal design to obtain continuous information on driving behaviour that is being compared with the results of extensive cognitive testing conducted every three months for three years. A driver facing camera, forward facing camera, and telematics unit are installed in the vehicle and data is downloaded every three months when the cognitive tests are administered.

Researchers gauge abnormal driving such as getting lost, ignoring traffic signals and signs, near-collision events, distraction and drowsiness, reaction time and braking patterns. They also look at travel patterns such as number of trips, miles driven, miles on the highway, miles during the night and daytime, and driving in severe weather.

How it works

The in-vehicle sensor network developed by FAU researchers in the College of Engineering and Computer Science, uses open-source hardware and software components to reduce the time, risks and costs associated with developing in-vehicle sensing units.

In-vehicle sensor systems are kept simple and compact by minimising complex wiring, limiting the size of the sensing units, and limiting the number of sensors in a vehicle to support the unobtrusiveness of in-vehicle sensors. Each in-vehicle sensor system is comprised of two distributed sensing units: one for telematics data and the other for video data.

Inertial measurement unit data is processed to determine hard braking, hard accelerations and hard turns and GPS data. It also includes a timestamp, latitude, longitude, altitude, course over ground and the number of communicating satellites.

The video unit has built-in artificial intelligence functions that analyse video in real-time. The driver-facing camera is mounted in the left corner of the windshield and is directed to the driver’s face to analyse his/her behaviour and facial expressions. The forward-facing camera is mounted under the rearview mirror and is used to record events external to the vehicle.

Driver-facing indices include face detection, eye detection (open or closed), yawning, distraction, smoking and mobile phone use. Behaviour indices include traffic sign detection (running a red light), object detection (pedestrian, cyclists, curbs, barriers or nearby vehicles), lane crossing, near-collision and pedestrian detection.

“These travel-pattern-related driver behaviour indices are known to be indicative of the changes in older drivers’ cognition and physical functions since they tend to incorporate deliberate avoidance strategies to compensate for age-related deficits,” said Tappen.

“Driver behaviour indices are evaluated for each driver and are summarised on a daily, weekly and monthly basis and are classified into four categories.”

A total of 460 study participants will be recruited from Broward and Palm Beach counties in Southeast Florida and are classified into three diagnostic groups: mild cognitive impairment, early dementia and unimpaired (normal). The Louis and Anne Green Memory and Wellness Center operated by FAU’s College of Nursing serves as the testing site for a clinical battery including assessments of cognition, functioning in daily activities and mood (depression), and an additional set of tests including executive function and attention.

Tappen adds: “The innovation of our research project lies in the unobtrusive, rapidly and readily available in-vehicle sensing and monitoring system built upon modern open-source hardware and software using existing techniques to develop and customise the components and configure them for this new purpose.”

The study is supported by a grant from the National Institute on Aging.

Continue Reading

Research

Smart wristband developed to identify and manage atrial fibrillation

Published

on

It’s one of the most common conditions affecting those over 65 and left untreated can lead to stroke, blood clots in the veins and, in the most extreme cases, heart failure.

Atrial fibrillation currently affects more than 40 million people worldwide and the incidence and prevalence of the medical condition have increased three-fold in the past 50 years as populations age and survival rates for chronic diseases increase.

Now thought of as a global epidemic, 16 million people in the United States alone are projected to have been diagnosed with the ailment by 2050. In Europe, the figure among the over 55s is expected to reach 14 million by 2060.

It is estimated that by 2050, AF will be diagnosed in at least 72 million individuals in Asia.

One of the most common symptoms of AF is a pounding, fluttering, or quivering heartbeat, more commonly known as heart palpitations. Other signs include dizziness, fatigue, a fast heart rate of more than 100 beats per minute, breathlessness, and chest pain – many of the classic stress or anxiety signs that characterise a panic attack.

It’s one of the reasons that millions of people are walking around unaware that they are suffering from atrial fibrillation. How many times have you heard someone attribute their racing heartbeat to a caffeine-induced surge brought about by having drunk one too many coffees?

Many more are asymptomatic, meaning they are producing and showing no symptoms at all.

Often the condition will only be picked up when a patient undergoes a health check for an unrelated matter.

However, early detection and treatment of AF are paramount if later complications are to be avoided.

Without treatment, people with AF are up to five times more likely to suffer strokes, leading to the risk of severe disability and even premature death.

But new patient-safe monitoring technology to check and manage individual factors provoking atrial fibrillation, has been invented by Lithuanian researchers that could hold the key to earlier diagnosis and outcomes for the potentially serious heart condition.

A smart wrist-worn bracelet has been developed by Lithuanian scientists to identify atrial fibrillation. Credit: KTU

It involves patients wearing a so-called smart bracelet – already an accepted accessory for many – that uses an algorithm that can detect atrial fibrillation.

Traditional methods of diagnosing AF involve patients having to wear intrusive and uncomfortable sensors. But this new technology incorporates complementary sensors and a signal processing algorithm, with patients also being asked to input potential arrhythmia triggers on a mobile app.

The device is the result of a successful collaboration between the Kaunas University of Technology Biomedical Engineering Institute (KTU BMEI) and Vilnius University’s Santaros Clinics.

Researchers at KTU BMEI have been working in the field of atrial fibrillation monitoring technology development for more than a decade. It was several years ago that they developed the bracelet – the patent application for the device was submitted to the Lithuanian State Patent Bureau at the end of 2018 – which is aimed at older people, who can be especially self-conscious when using technologies and smart devices.

Professor Vaidotas Marozas, director of KTU BMEI, told Agetech World: “We are focusing on developing technologies which are needed for the public and contemporary medicine. For example, due to the prevalence of this condition (AF), every person older than 65 should be checked for atrial fibrillation.

“Non-invasive, compact wearable devices are an attractive solution for monitoring the health status of such high-risk groups.”

The disease usually starts with self-terminating so-called ‘paroxysmal episodes’ which, if recognised in time, can be treated by non-medication means.

These episodes may be different for each patient, however. For some, they may last for a short time and recur infrequently. For others, the episodes can be longer and more frequent.

But untreated AF will eventually develop into a persistent condition, which is more complicated to treat.

The smart wristband developed by Lithuanian scientists. Credit: KTU

The KTU-developed smart bracelet – which Lithuanian company, Teltonika, has stepped in to produce – has been used together with other devices in the TriggersAF project supported by the European Regional Development Fund.

The aim of the project coordinated by the Kaunas University of Technology in partnership with Vilnius University, is to develop and test methods that allow patients to identify their individual arrhythmia triggers via a wrist-wearing device.

It is already known that for some patients, atrial fibrillation episodes can be provoked by certain modifiable factors, such as alcohol, increased physical activity, stress, and sleep disturbance.

Identifying and avoiding individual factors would help determine non-pharmaceutical intervention methods to arrhythmia management.

As the project addresses a clinical problem, it has been important to have on board experienced clinicians who deal with AF daily. One of them is Justinas Bacevičius, a cardiologist at VU Hospital Santaros Clinics.

He said: “Although we see a wide variety of atrial fibrillation patients in our hospital, two types can be distinguished. The first group includes older, overweight, diabetic, hypertensive patients or those having sleep apnoea.

“The second group is the complete opposite – often they are young, professional sportspersons, businesspeople or performers who are experiencing a lot of stress.”

Mr Bacevičius said the data from the patients suggests a link between the onset of arrhythmia and sleep disorders.

He added that interestingly, even in patients who are not diagnosed with sleep apnoea, a correlation between snoring during sleep and the onset of atrial fibrillation in the morning, or later in the day, had been identified.

But with no objective methods to identify individual factors influencing the arrythmia in patients, KTU BMEI researchers in collaboration with cardiologists from VU Hospital Santara Clinics and their long-term partner Leif Sörnmo from Lund University in Sweden, have proposed one.

It assumes that arrythmia parameters, such as the relative duration of an episode, increase after an arrythmia-provoking factor.

Vilma Pluščiauskaitė, a PhD student at KTU and a junior researcher on the project, explained: “The essence of our proposed approach is that the patient uses a wearable bio signal-recording device for a set monitoring period, e.g. two weeks, and enters potential triggers for atrial fibrillation into a mobile app.

“For the next two weeks, the patient avoids the identified potential triggers, and the relation is assessed by an equation proposed by KTU BMEI researcher Dr Andrius Petrėnas.

“If a correlation between the influencing factor and the occurrence of arrhythmia is detected, the patient is advised to avoid the specific identified factor.”

The project’s database is the first of its kind in the world. It includes the recorded patients’ physiological signals, such as electrocardiogram and photoplethysmogram (a simple and low-cost technique that sends light pulses through the skin into the blood vessels to detect blood volume changes), and potential arrythmia provoking factors entered in a person’s mobile app.

The database collected by the researchers has allowed them to test the developed method and identify arrythmia-provoking factors in individual patients.

Professor Vaidotas Marozas. Credit: KTU

Project leader, Professor Marozas, is understandably delighted with its success, which will allow further development of the smart bracelet technology.

He said: “The database generated by the project is a unique result. We have managed to interest an international consortium funded by the European Metrology Association in this data. This consortium has invited us to join their new project as a partner and we will continue our work.”

The lack of technology currently available to individually identify arrythmia-provoking factors is probably due to the fact that monitoring has traditionally been inconvenient. Patients usually have to have an electrocardiogram (ECG), which is an electrical recording of their heart rhythm.

If that doesn’t identify a problem, then further monitoring will be needed, involving having to wear a portable ECG recording device for 24 hours or more.

Patients may also be required to fill in numerous questionnaires to pinpoint trigger factors, which can be subject to recall bias, where they either forget about a potential arrhythmia provoking stimulus or are reluctant to acknowledge the presence of certain influences, such as alcohol intake.

Mr Pluščiauskaitė said: “Certain influencing factors for arrythmia, such as increased exercise, stress, or sleep disturbances, can be identified from physiological signals by the dedicated algorithms. However, other influencing factors, such as alcohol consumption, are difficult to identify in the signals, so it is best if the patient has the opportunity to indicate when he or she consumed alcohol.”

He added that it is hoped that in the future, identifying these arrythmia triggers will only require a smart bracelet incorporating complementary sensors and signal processing algorithm.

 

 

Continue Reading

Technology

Revolutionary Scottish trial aims to improve outcomes for stroke survivors through exercise

Published

on

A trailblazing rehabilitation hub using exercise and other therapies to help boost stroke survivors’ recovery has opened its doors at one of Scotland’s largest hospitals – with evidence already pointing towards its life-changing impact on patients.

The hub is part of a trial being conducted by the University of Strathclyde in partnership with NHS Lanarkshire, to meet the overwhelming demand for intensive stroke rehabilitation.

It’s already known that the sooner a patient can begin stroke rehabilitation, the more likely they are to regain lost abilities, such as speech and movement. It’s a common practice for therapy to start as soon as 24 to 48 hours after a stroke, while a patient is still in hospital.

New National Institute for Health and Care Excellence (NICE) guidelines in the UK suggest stroke patients receive three hours of rehabilitation a day, five days a week.

This is a significant increase from the previous NICE advice of 45 minutes per day.

However, due to the overwhelming demand for rehabilitation, the NHS has struggled to meet the minimum recommended level, with current data suggesting that on average patients receive just 14 minutes of physiotherapy, 13 minutes of occupational therapy, and seven minutes of speech therapy a day.

But the new technology-enriched stroke rehabilitation hub (TERHS) at the University Hospital in Wishaw, which lies 11 miles south east of Glasgow, allows patients to access therapy more quickly at the required frequency.

Just weeks after its launch, proof is already emerging that the hub, which has been designed to holistically address the physical and cognitive harm caused by a stroke, has the potential to positively transform the recovery process for survivors.

Now it’s hoped if further evaluation backs up the preliminary findings the concept could be rolled out not just across Scotland, but all four UK nations within the next two years, putting the NHS at the forefront of treating patients in the chronic stage of stroke recovery.

Dr Gillian Sweeney

Dr Gillian Sweeney, an occupational therapist with NHS Lanarkshire and advanced practitioner for stroke survivors, who has led on the development of the trial and set up the hub, told Agetech World the model could receive a wider launch if health trusts are presented with concrete evidence of its physical and financial benefits.

Referring to the hospital trial currently underway and research being done by the University of Strathclyde’s Department of Biomechanical Engineering into the use of such hubs, Dr Sweeney said: “This is groundbreaking, a life-changing trial for those who have had a stroke. I’m a therapist myself and I’ve worked in the NHS for around 20 years, and what I would say is, we have never been able to deliver enough rehabilitation within the current model and resources, and things are getting more pressurised.

“I think every therapist that works in stroke would probably say ‘We know we are not delivering the level of intensity that we should be.’ We know from evidence that the greater the intensity the better the outcomes.

“But we have been on a hamster wheel for a number of years, and I think we are now at the point where this model, with modest investment – and I don’t want to say within current resources because we need the investment in the equipment and staff to run the groups – but with a realistic, modest investment, could actually achieve those levels of rehab activity that we never foresaw we could do without making a huge investment in staffing for one-to-one treatment.

“For me, the feedback from participants, both within the university and even in the early stages on the hospital ward, is that the difference that makes is massive.

“I think for me, as well, what it does, is that it brings back the person’s control of their own rehabilitation. They have the opportunity to attend this hub and with the minimum amount of support, they are back in control of their own rehab.

“They can choose how often they come for and how long they stay. That, in itself, has been huge.”

Even more remarkable is that participants from the community that have taken part in the university-based study – some of whom suffered a stroke up to a decade ago – have seen functional improvements.

“It wasn’t what we expected to see, but we did,” Dr Sweeney said.

“The study initially was just to look at, ‘is it safe, and do people like it?’ Ten years after a stroke there wasn’t a huge amount of expectation that things like arm function or walking speed would improve.

Dr Andy Kerr working with a stroke survivor at the University of Strathclyde. Credit: University of Strathclyde

“But with the outcome measures we have taken, pretty much everybody has improved in one or more areas.

“If you look at that and think ‘we can make those improvements 10 years down the line,’ what could you do in the very early phases after a stroke when your brain is more likely to make the changes to see improvement?

“For me, it is groundbreaking. If you use this model and put some of this equipment in so people can do the things they need to, it is a total no-brainer.

“Yet it (the resource) is not there. There are reasons for it not being there, and part of that has to do with people within healthcare systems often working so hard and under such pressure they don’t get the space to think about new ways of working or to test them.

“There are traditional ways of working and it takes a long time within the NHS to adopt new ways and to embed that.”

The impact of stroke can be profound and the months immediately after suffering one are key to recovery.

Located within the University Hospital’s stroke unit, the TERHS hub has a virtual reality treadmill with a specialist harness, a balance trainer, and power-assisted equipment from UK-based wellness and wellbeing supplier Innerva, which supports users to exercise allowing them to work passively or actively, depending on where they are in their recovery stage.

The technology also incorporates ‘gamification’, such as virtual reality, puzzles and problem-solving activities, which helps to improve the engagement with and response to therapy.

In addition, the hub houses specialist cognitive and VR equipment, helping to enrich the environment and improve users engagement with and response to rehabilitation therapy.

The hub builds on the research being carried out by the University of Strathclyde which has seen a team led by Dr Andy Kerr and Professor Philip Rowe in the Department of Biomechanical Engineering, set up a gym-like space offering an eight-week programme to survivors under the supervision of Dr Sweeney and research physiotherapist, Mel Slachetka, in the Sir Jules Thorn Centre for Co-Creation of Rehabilitation Technology.

The hospital hub has attracted 15 patient recruits so far, all of whom have been “extremely positive” about the programme, Dr Sweeney said, with some managing three hours of rehabilitation a day.

“People are getting much more activity time than would have been the case. Patients like the Innerva equipment as all they have to do is press a button, and they feel they are in control.

The University of Strathclyde’s technology-enriched rehabilitation hub. Credit: University of Strathclyde

“The setting seems to be popular, and what we are finding is that patients are coming up in a group. Having a stroke can be isolating, but the feedback we are getting is that users value the opportunity to meet people who are going through the same experience as them.

“We know that on stroke wards across the country there isn’t enough staff. Often what happens is that the nursing staff will help patients get out of bed and then they will sit in a chair for hours.

“But with the hub they are using their brain, they are being active, they are off the ward, and they are having the opportunity to socialise.”

The hub can support five patients at a time alongside two support staff.

Given the evidence already accrued through the University of Strathclyde’s rehabilitation programme in which every person using the Sir Jules Thorn Centre facility has seen an improvement, mostly in walking speed but also in some cases speech, it seems difficult to understand why the hub idea isn’t being rolled out as a priority.

Especially as Dr Sweeney admits her ambition is to see technology-driven rehabilitation hubs established in community settings across the UK to provide stroke survivors with easily accessible therapy for optimal recovery.

But whilst the idea may indeed, to quote Dr Sweeney, be a ‘no-brainer,’ even the most obvious concepts need to be proved on a number of levels.

With funding from the Engineering and Physical Science Research Council’s Impact Acceleration Account, a research assistant will assess the impact of the hub on inpatients in the early phase of their recovery with the aim of enabling them to achieve, or even exceed, the recommended levels of rehabilitation.

“We need to look at the costs and the harsh economics,” Dr Sweeney said. “From a research point of view, we must prove that. We are often not very good at proving that something is cost-effective.

“Rehabilitation in general has been run in the same way for a long time and it can be difficult to change traditional practices. And rehabilitation therapists as well as the public can be frightened of technology.

“There is often a feeling that if somebody who has had a stroke is elderly, they won’t be able to cope with technology. But one of our patients is 94, and we are finding that age isn’t as much of a barrier as people may think it is.

“But we need to prove all these things as well as the positive impact this approach can have on stroke survivors. At the minute we have tried it with people who are in the very early stages of stroke rehab, we have tried it in an acute inpatient ward, and we know it is safe and that it is acceptable.

“But we need to prove that people like the hub idea, that they get great intensity of rehabilitation, and that it improves people’s outcomes. Once we do that that will hopefully allow us to make a case that these facilities should be in place.

“Obviously, there are initial costs in terms of buying equipment, and there needs to be a discussion around how do we change the pathways and how do we change the ways the services work to allow this to become part of the normal treatment.

“But at the end of the day, what we want is to keep people out of hospital so they can go home and lead as normal a life as possible in the community.”

Continue Reading

Trending