Connect with us

Research

Frailty associated with more adverse events after surgery, study finds

Published

on

frailty surgery

New research shows that frailty in older adults is linked to increased rates of death and major morbidity following surgery.

A new study from researchers at Wake Forest University School of Medicine shows that frailty is associated with higher rates of death and major morbidity after surgery.

“Frailty refers to a lack of functional or physiological reserve that determines whether patients bounce back from a health event such as surgery or illness,” said Ashish K. Khanna MD, associate professor of anesthesiology and vice-chair of research with the department of anesthesiology, section on critical care medicine at Wake Forest University School of Medicine and corresponding author of the study.

According to Khanna, most rating scales to assess frailty require considerable time and resources. In-clinic assessments also often include patient self-reported questionnaires and physical examinations by clinicians with varying, sometimes subjective results.

Ashish Kumar Khanna, MD.

In 2019, Atrium Health Wake Forest Baptist Medical Center integrated an electronic frailty index (eFI) into electronic health records (EHR). The eFI is a passive digital marker, which leverages routine clinical care to yield an assessment of an older adult’s frailty.

The Wake Forest eFI was adapted by Kate Callahan MD, associate professor of gerontology and geriatric medicine, and Nicholas Pajewski, PhD, associate professor for biostatistics and data science, from previous work conducted in Canada and England.

The tool provides an automated score – reported as a proportion on a scale between 0-1 – derived from two years of EHR data that uses over 50 health deficits including medical diagnoses, medications, lab tests, vital signs, physical function and more. It categorises patients as fit, pre-frail and frail.

For this retrospective study, conducted at Atrium Health Wake Forest Baptist, researchers examined the association of frailty with adverse events after elective noncardiac surgery that lasted more than one hour.

A group of 33,449 patients was identified with a median age of 67—34.6 per cent were classified as fit, 47.6 per cent were prefrail, and 17.8 per cent as frail.

During the acute period following surgery, the research team measured hospital-acquired conditions, in-hospital and 30-day mortality, 30-day emergency department visits, 30-day hospital readmissions, unexpected ICU admissions and other patient safety indicators. They also extracted data on delayed complications such as transfer to a skilled nursing facility after surgery.

“We found that the prefrail and frail patients had significantly higher odds of postoperative adverse events than patients with a fit status,” Khanna said.

“Similarly, an increase of eFI by as small an increment as 1 additional health deficit significantly increased the odds of these events. These findings are important because the eFI tool can be used to screen and optimise patients in the pre-operative period. Ideally, these patients should also receive increased monitoring and postoperative attention.”

Khanna also said that many important components of the eFI score include modifiable risk factors such as anaemia, diabetes or hypertension.

“Pre-operative interventions could prove beneficial,” Khanna said. “Using eFI to guide pre-operative therapy can potentially improve care and help frail older adults successfully tolerate and recover better from surgery, but more interventional trials are needed.”

Research

Older adults hospitalised for heart failure had high risk of kidney complications, finds study

Published

on

In a study of Medicare beneficiaries, researchers from Brigham and Women’s Hospital found that one year after hospitalisation for heart failure, six per cent of patients had progressed to dialysis.

Researchers from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system, have found links between heart failure and kidney disease that support new approaches for integrating the care of these conditions.

In an analysis that included adults ages 65 and older who were hospitalised for heart failure from across 372 sites in the US, researchers found that patients had a substantial risk of kidney complications, with approximately six per cent progressing to dialysis within a year of being hospitalised for heart failure. The new results are published in JAMA Cardiology.

“We know that heart and kidney health are highly interconnected, but management of heart and kidney disease remains relatively siloed, and kidney health often isn’t prioritised in patients with heart disease until advanced stages,” said first author John Ostrominski, MD, a fellow in Cardiovascular Medicine and Obesity Medicine at the Brigham.

“Declining kidney function is often asymptomatic until late in the disease course, but even less advanced stages of kidney impairment can have important implications for cardiovascular health. Hence, there’s a need for analyses that assess kidney outcomes in people with heart failure.”

About two thirds of older adults with heart failure have abnormal kidney function. However, few analyses to date have investigated the occurrence of clinically relevant kidney outcomes, such as hospitalisation for acute kidney injury or dialysis, in patients with heart failure.

Evaluating these more recognisable and patient-centered outcomes, according to Ostrominski, may result in substantial changes to the way that heart and kidney disease are managed together in the clinic.

The study analysed Medicare claims data from 85,298 patients over the age of 65 who were hospitalised with heart failure between 2021 and 2024. The data was sourced from the Get with the Guidelines-Heart-Failure Registry, an initiative supported by the American Heart Association that seeks to connect hospitals with current evidence-based guidelines and accurate measurement tools to improve care quality and industry practices. The registry is also proving a valuable source of information for researchers examining trends in health outcomes for patients with heart failure.

In the present study, 63 percent of patients were discharged with significantly impaired kidney function, as measured by their rate of filtration. The researchers also found that the risk of adverse kidney outcomes increased steeply in patients with lower kidney function. By one year after discharge, six per cent of patients were on dialysis, and seven per cent of patients were either on dialysis or had progressed to end stage kidney disease.

The findings suggest that at the individual provider level, cardiologists should prioritise assessing kidney function – including measuring kidney filtration and looking for evidence of protein in the urine, also known as albuminuria – in all patients with heart failure, and, when indicated, consider heart therapies that are known to improve kidney outcomes.

More broadly, the study emphasises the need for systemic changes that better support the simultaneous management of heart and kidney disease, including establishing clinics focused on integrating these two care areas, incorporating kidney outcomes into health care performance metrics for cardiovascular diseases, and expanding Medicare reimbursement protocols for interdisciplinary chronic care management.

Researchers at Mass General Brigham are actively engaged as sites for clinical trials evaluating newer treatment strategies for individuals with cardiovascular and kidney disease. The Accelerator for Clinical Transformation team is also developing new ways of delivering care—including medications with established kidney benefits—to eligible patients with and without heart failure.

“The trends we’ve observed aren’t especially surprising given what we know about the links between heart and kidney health, but what’s important is that this research emphasises the scope of the problem and gives us information we can act upon to directly improve clinical outcomes in patients with heart failure,” said Ostrominski.

“There are important opportunities for patients and providers, healthcare institutions, and, at the broader state and national levels, in terms of healthcare policy that could make a big difference for patients.”

Continue Reading

Research

Heart healthy behaviours may help reverse rapid cell aging – study

Published

on

The benefits gained with higher lifestyle scores may be associated with the positive influence of heart disease risk factors on the aging of the body and its cells, finds a new study.

The benefit of better heart health may be associated with the positive impact of heart healthy lifestyle factors on biological aging (the age of the body and its cells), according to new research published in the Journal of the American Heart Association.

According to the American Heart Association’s 2024 Heart Disease and Stroke Statistics, heart disease and stroke claimed more lives in the US in 2021 than all forms of cancer and chronic lower respiratory disease combined, and also accounted for approximately 19.91 million global deaths.

This study analysed whether a chemical modification process known as DNA methylation, which regulates gene expression, may be one mechanism by which cardiovascular disease health factors affect cell aging and the risk of death.

DNA methylation levels are the most promising biomarker to estimate biological age. To some degree, biological age is determined by your genetic makeup, and it can also be influenced by lifestyle factors and stress.

Researchers examined health data for 5,682 adults (mean age of 56 years; 56% of participants were women) who were enrolled in the Framingham Heart Study, an ongoing, large, multigenerational research project aimed at identifying risk factors for heart disease.

Using interviews, physical exams and laboratory tests, all participants were assessed using the American Heart Association’s Life’s Essential 8 tool. The tool scores cardiovascular health between 0-100 (with 100 being the best) using a composite of four behavioral measures (dietary intake, physical activity, hours slept per night and smoking status) and four clinical measurements (body mass index, cholesterol, blood sugar and blood pressure).

Each participant was also assessed using four tools that estimate biological age based on DNA methylation and a fifth tool that assesses a person’s genetic tendency towards accelerated biological aging. Participants were followed for 11-14 years for new-onset cardiovascular disease, cardiovascular death or death from any cause.

The analysis found:

  • For each 13-point increase in an individual’s Life’s Essential 8 score, the risk of developing cardiovascular disease for the first time was reduced by about 35 per cent death from cardiovascular disease was reduced by 36 per cent and death from any cause was reduced by 29 per cent.
  • In participants with a genetic risk profile making them more likely to have an accelerated biological age, the Life’s Essential 8 score had a larger impact on outcomes potentially via DNA methylation, i.e., DNA methylation accounted for 39 pre cent, 39 per cent, and 78 per cent reduction in the risk of cardiovascular disease , cardiovascular death and all-cause death, respectively.
  • Overall, about 20 per cent of the association between Life’s Essential 8 scores and cardiovascular outcomes was estimated to be due to the impact of cardiovascular health factors on DNA methylation; in contrast, for participants at higher genetic risk, the association was almost 40 per cent.

Jiantao Ma, PhD, senior study author and an assistant professor in the division of nutrition epidemiology and data science at the Friedman School of Nutrition Science and Policy at Tufts University in Boston, said: “While there are a few DNA methylation-based, biological age calculators commercially available, we don’t have a good recommendation regarding whether people need to know their epigenetic age.

“Our message is that everyone should be mindful of the eight heart disease and stroke health factors: eat healthy foods; be more active; quit tobacco; get healthy sleep; manage weight; and maintain healthy cholesterol, blood sugar and blood pressure levels.”

Randi Foraker, Ph.D., M.A., FAHA, co-author of the Life’s Essential 8: Updating and Enhancing the American Heart Association’s Construct of Cardiovascular Health, said the findings are consistent with prior research.

“We know that modifiable risk factors and DNA methylation are independently associated with cardiovascular disease. What this study adds is that DNA methylation may serve as a mediator between risk factors and cardiovascular disease,” said Foraker, who is a professor of medicine at the Institute for Informatics, Data Science and Biostatistics and director of the Center for Population Health Informatics, both at Washington University School of Medicine in St. Louis, Missouri.

“The study highlights how cardiovascular health can impact biological aging and has important implications for healthy aging and prevention of cardiovascular disease and potentially other health conditions.”

As the study is an analysis of previously collected health data, it cannot prove a cause-and-effect relationship between cardiovascular health risk factors and DNA methylation.

In addition, DNA methylation measures were  from a single time point, which limits the validity of the mediation effect. The study’s findings are also limited because the participants were predominantly of European ancestry, so the interactions of Life’s Essential 8 and genetic aging found in this study may not be generalizable to people of other races or ethnicities.

“Currently, we are expanding our research to include people of other racial and ethnic groups to further investigate the relationship of cardiovascular risk factors and DNA methylation,” Ma said.

Continue Reading

Research

€37.5 million for regenerative medicine using smart materials

Published

on

A new collaboration has received €37.5 million for regenerative medicine using smart materials to help boost research aiming to cure chronic diseases in an ageing population.

The DRIVE-RM consortium has been awarded the funding under the prestigious NWO SUMMIT programme.

The DRIVE-RM, led by Professor of Experimental Nephrology Marianne Verhaar from UMC Utrecht, collaboration involves UMC Utrecht, Utrecht University, Eindhoven University of Technology, Maastricht University, and the Hubrecht Institute, focusing on smart materials that assist the body in healing.

Regenerative medicine involves repairing or replacing damaged tissues and organs by leveraging the body’s own healing processes. DRIVE-RM specifically focuses on material-driven regeneration, using intelligent, lifelike, or even living materials that can prompt the human body to generate new tissue. This approach could radically change the treatment of chronic diseases such as kidney failure, heart failure, and worn joints in the future.

Verhaar commented: “Over the past 20 years, we have established strong collaborative efforts in regenerative medicine in the Netherlands with several large, innovative, and successful projects like the MDR Gravitation consortium. The SUMMIT grant is a wonderful recognition of this work and underscores the importance of regenerative medicine as a leading field in the Netherlands.”

The involved institutes have been collaborating for some time, resulting in valuable innovations. One example is a synthetic, biodegradable blood vessel that aids the body in regenerating blood vessels.

“With the consortium, we developed a blood vessel made of a degradable material that is gradually replaced by the body’s own tissue,” said Verhaar. “It can function immediately as a blood vessel and does not lose functionality as the body takes over. This innovation beautifully combines biology and technology. Now, we will see if it also works well in patients.”

DRIVE-RM is led by five outstanding scientists, all experienced in leading innovative research projects. In addition to Marianne Verhaar, who focuses on kidney and vascular regeneration, the team contains Carlijn Bouten (TU/e, cardiovascular regeneration and tissue technology), Jos Malda (Utrecht University and UMC Utrecht, biofabrication and bone/cartilage regeneration), Jeroen Bakkers (Hubrecht Institute and UMC Utrecht, regenerative biology and heart regeneration), and Clemens van Blitterswijk (Maastricht University, tissue technology and biomaterials).

The DRIVE-RM project takes a multidisciplinary approach, integrating for example Utrecht innovations such as organoids and 4D bioprinting with the technical and material expertise of TU/e and Maastricht University. This leads to new insights in directing repair processes from the level of individual cells to whole organs. These combinations are essential for customising treatments tailored to individual patients and their specific conditions.

A new approach is needed

The number of people with chronic diseases is increasing significantly, mainly due to aging populations. This leads to human suffering and high healthcare costs.

“Regenerative medicine offers a promising opportunity to effectively treat chronic conditions by encouraging the body to heal itself,” continued Verhaar.

“Our scientists aim to fully understand the repair processes of tissues and organs in the patient and then direct this with implantable smart materials.”

The DRIVE-RM consortium focuses on developing new treatments for heart failure, kidney failure, and disorders of bones, cartilage, and joints.

“Besides advancing scientific research and technological innovation, DRIVE-RM also provides a platform for collaboration with clinicians to make the translation to clinical practice,” added Verhaar, “and with ethicists to address ethical issues surrounding regenerative therapies.”

Together with the involved Health Technology Assessment experts, this provides a framework that ensures these advanced interventions remain affordable and accessible.

Enabling future generations of scientists

The DRIVE-RM consortium places great emphasis on maintaining a healthy, inclusive, and diverse research culture and training the next generation—a key goal of the SUMMIT program. Therefore, the team explicitly includes emerging talents who will continue to strengthen Dutch research in regenerative medicine.

Verhaar concludes, “Ultimately, DRIVE-RM is more than just a research initiative; it is a vision for the future of healthcare. A future in which chronic diseases can truly be cured. By collaborating with leading academic institutions, DRIVE-RM aims to make these visionary treatments a reality.”

Continue Reading

Trending