Connect with us

News

Hope in sight for patients with severe dry AMD

Published

on

The first ever drug to treat an acute form of dry age-related macular degeneration (AMD) has been approved in the United States.

Pegcetacoplan, also known as Syfovre, has been cleared for use in patients by the Food and Drug Administration (FDA).

Until now there has been no treatment for the severe form of dry AMD called geographic atrophy, a leading cause of blindness typically affecting the over-60s.

Geographic atrophy –  seen as part of late-stage AMD, an eye disease that can blur the central vision – is a complex ailment that researchers have spent decades trying to address. Pegcetacoplan’s approval is based on clinical trials which have shown the drug manufactured by Apellis Pharmaceuticals, reduced the condition’s rate of progression in its later-stage.

Whilst not a cure for geographic atrophy, pegcetacoplan’s approval in the US offers a glimmer of hope for the treatment of the devastating disease affecting five million people globally, and could open the door to the drug’s approval in other countries.

A marketing authorisation application for pegcetacoplan is under review by the European Medicines Agency with a decision expected in early 2024. In addition, a marketing application has been submitted to Health Canada, and the Medicines and Healthcare products Regulatory Agency (MHRA) in the UK is currently reviewing the data and evidence on the risks and benefits of the treatment.

Geographic atrophy is a progressive and irreversible form of AMD caused by the growth of lesions, which destroy the retinal cells responsible for sight.

On average, it takes only 2.5 years for geographic atrophy lesions to start impacting the fovea, which is responsible for central vision.

Around 18 million people worldwide are expected to be affected by 2040.

Anjali Shah, MD, an ophthalmologist at Michigan Medicine, the University of Michigan’s academic medical centre, says it is important to note that pegcetacoplan doesn’t reverse or stop progression of geographic atrophy, but may delay further vision loss.

He said: “Based on clinical trials, we estimate that the drug slows the rate of progression by one to three months each year. In other words, if the disease was going to progress to a certain stage of severity in 24 months, it would take 27-30 months while on the drug.”

Dr Shah added: “It’s unclear how long patients need to be on the medication and it’s likely that the duration of treatment will be different for every person, but most people will need to continue treatment for several years. There are currently no drops or pills to treat dry AMD.”

The drug is designed to be injected into the eye every four to eight weeks and according to Dr Shah the clinical trials suggest there’s about a 10% risk of developing wet macular degeneration in the first year of treatment. Wet macular degeneration is a long-lasting eye disorder that causes blurred vision or a blind spot in the central vision. It can be treated, but it would require different injections in the eye.

Injecting medication directly into the eye brings risks, however, the biggest of which is contracting an infection which could cause permanent vision loss.

Anyone with geographic atrophy can get the injection, but it may only be an ideal treatment for a select group of patients, said Dr Shah.

“In the clinical trials, there was no improvement in vision in the first two years after starting treatment.  The studies suggest that there may be some visual benefit over time, but there is currently no data to confirm that,” he explained.

Geraldine Hoad, research manager of the UK-based Macular Society, has described the US development as a “huge milestone” for patients living with dry AMD. But while welcoming the announcement, she added it remains to be seen how much benefit the treatment will provide to patients.

“We hope to have a clearer picture over the coming months and more hope to offer patients diagnosed with this devastating condition,” she said.

Pegcetacoplan is not the only hope for dry AMD sufferers. Iveric Bio based in New Jersey has submitted a New Drug Application (NDA) to the US FDA for Zimura to treat dry AMD. The innovative American biopharmaceutical company expects to hear back in August 2023.

Zimura acts as a blocker of the C5 protein, which is thought to play a key role in the advancement of the condition.

Scientists have reported that the drug decreases the activity which leads to degeneration of retinal cells and can slow the progression of late-stage dry AMD.

AMD falls into two categories – dry and wet – and together affects around 200 million people globally. A person can have either or both types, and dry AMD can suddenly change into the wet kind.

The disease affects the central vision and is the leading cause of irreversible sight loss in older adults.

A clue to those likely to be affected lies in the name, with AMD most commonly seen in people in their 50s and 60s.

While sufferers rarely go blind from AMD, everyday activities like reading, driving, recognising faces, using a computer, preparing meals, watching TV, cleaning and, in some cases, self-care, can become progressively more difficult.

According to the British Medical Journal, there is evidence that those with AMD suffer from higher rates of depression than among community dwelling elderly.

AMD’s exact causes are not known. But it has been linked to smoking, being overweight, eating a diet high in saturated fat, hypertension, and a family history of the disease.

It can often initially go unnoticed by sufferers and will only be picked up during a routine eye test.

Until now there has been no treatment for dry AMD. But regular eye injections and a light treatment called photodynamic therapy can help prevent wet AMD from becoming worse.

 

 

News

Gut microbes from aged mice induce inflammation in young mice

Published

on

Findings from a new study suggest that changes to the gut microbiome play a role in the systemwide inflammation that often occurs with ageing.

When scientists transplanted the gut microbes of aged mice into young “germ-free” mice — raised to have no gut microbes of their own — the recipient mice experienced an increase in inflammation that parallels inflammatory processes associated with ageing in humans. Young germ-free mice transplanted with microbes from other young mice had no such increase.

Published in Aging Cell, the study also found that antibiotics caused longer-lasting disruptions in the gut microbiomes of aged mice than in young mice.

“There’s been a growing consensus that ageing is associated with a progressive increase in chronic low-grade inflammation,” said Jacob Allen, a professor of kinesiology and community health at the University of Illinois Urbana-Champaign who led the new research with Thomas Buford, a professor of medicine at the University of Alabama at Birmingham.

“And there’s a kind of debate as to what drives this, what is the major cause of the ageing-induced inflammatory state. We wanted to understand if the functional capacity of the microbiome was changing in a way that might contribute to some of the inflammation that we see with ageing.”

Previous studies have found associations between age-related changes in the microbial composition of the gut and chronic inflammatory diseases such as Parkinson’s disease and Alzheimer’s disease. Some studies have linked microbial metabolism to an individual’s susceptibility to other health conditions, including obesity, irritable bowel syndrome and heart disease. Age-related changes in the gut microbiome also may contribute to the so-called leaky gut problem, the researchers said.

“Microbiome patterns in aged mice are strongly associated with signs of bacterial-induced barrier disruption and immune infiltration,” they wrote.

“The things that are in our gut are supposed to be kept separate from the rest of our system,” Buford said. “If they leak out, our immune system is going to recognize them. And so then the question was: ‘Is that a source of inflammation?’”

Many studies have compared the relative abundance and diversity of species of microbes in the gut, offering insight into some of the major groups that contribute to health or disease. But sequencing even a portion of the microbes in the gut is expensive and the results can be difficult to interpret, Allen said. That is why he and his colleagues focused on microbial function — specifically, how the gut microbiomes of ageing mice might spur an immune response.

The team focused on toll-like receptors, molecules that mediate inflammatory processes throughout the body. TLRs sit in cellular membranes and sample the extracellular environment for signs of tissue damage or infection. If a TLR encounters a molecule associated with a potential pathogen — for example, a lipopolysaccharide component of a gram-negative bacterium — it activates an innate immune response, calling in pro-inflammatory agents and other molecules to fight the infection.

The researchers first evaluated whether the colonic contents of young and aged mice were likely to promote TLR signalling. They found that microbes from aged mice were more likely than those from young mice to activate TLR4, which can sense lipopolysaccharide components of bacterial cell walls. A different receptor, TLR5, was not affected differently in aged or young mice. TLR5 senses a different bacterial component, known as flagellin.

Young germ-free mice transplanted with the microbes of aged mice also experienced higher inflammatory signalling and increased levels of lipopolysaccharides in the blood after the transplants, the team found.

This finding provides “a direct link between ageing-induced shifts in microbiota immunogenicity and host inflammation,” the researchers wrote.

In other experiments, the team treated mice with broad-spectrum antibiotics and tracked changes in the microbiomes during treatment and for seven days afterward.

“One of the most interesting questions for me was what microbes come back immediately after the treatment with antibiotics ends,” Buford said. And in the mice with aged microbiota in their guts, “these opportunistic pathogens were the most quick to come back.”

“It appears that as we age our microbiome might be less resilient to antibiotic challenges,” Allen said. “This is important because we know that in the U.S. and other Western societies, we’re increasingly exposed to more antibiotics as we age.”

The study is an important step toward understanding how age-related microbial changes in the gut may affect long-term health and inflammation, the researchers said.

Co-authors of the study also included Illinois postdoctoral researcher Elisa Caetano-Silva; U. of I. Ph.D. student Akriti Shrestha; National Children’s Hospital research scientist Michael Bailey; and Jeffrey Woods, the director of the Center on Health, Aging and Disability at Illinois.

Allen also is a professor of nutritional sciences at Illinois and an affiliate of the Carl R. Woese Institute for Genomic Biology at the U. of I.

Continue Reading

News

Evening exercise benefits elderly hypertensives

Published

on

Evening exercise benefits elderly hypertensives

A study conducted at the University of São Paulo with 23 volunteers found that aerobic exercise performed in the evening benefits elderly hypertensives more than morning exercise.

Aerobic training is known to regulate blood pressure more effectively when practiced in the evening than in the morning.

Researchers who conducted a study of elderly patients at the University of São Paulo’s School of Physical Education and Sports (EEFE-USP) in Brazil concluded that evening exercise is better for blood pressure regulation thanks to improved cardiovascular control by the autonomic nervous system via a mechanism known as baroreflex sensitivity.

Leandro Campos de Brito, first author of the article, commented: “There are multiple mechanisms to regulate blood pressure, and although morning training was beneficial, only evening training improved short-term control of blood pressure by enhancing baroreflex sensitivity.

“This is important because baroreflex control has a positive effect on blood pressure regulation, and there aren’t any medications to modulate the mechanism.”

In the study, 23 elderly patients diagnosed and treated for hypertension were randomly allocated into two groups: morning training and evening training. Both groups trained for ten weeks on a stationary bicycle at moderate intensity, with three 45-minute sessions per week.

Key cardiovascular parameters were analysed, such as systolic and diastolic blood pressure, and heart rate after ten minutes’ rest. The data was collected before and at least three days after the volunteers completed the ten weeks of training.

The researchers also monitored mechanisms pertaining to the autonomic nervous system, which controls breathing, heart rate, blood pressure, digestion, and other involuntary bodily functions, such as muscle sympathetic nerve activity, which regulates peripheral blood flow via contraction and relaxation of blood vessels in muscle tissue, and sympathetic baroreflex sensitivity, assessing control of blood pressure via alterations to muscle sympathetic nerve activity.

In the evening training group, all four parameters analysed were found to improve: systolic and diastolic blood pressure, sympathetic baroreflex sensitivity, and muscle sympathetic nerve activity. In the morning training group, no improvements were detected in muscle sympathetic nerve activity, systolic blood pressure or sympathetic baroreflex sensitivity.

“Evening training was more effective in terms of improving cardiovascular autonomic regulation and lowering blood pressure. This can be partly explained as due to an improvement in baroreflex sensitivity and a reduction of muscle sympathetic nerve activity, which increased in the evening. For now, all we know is that baroreflex control is the decisive factor, from the cardiovascular standpoint at least, to make evening training more beneficial than morning training, since it induces the other benefits analysed. However, much remains to be done in this regard in order to obtain a better understanding of the mechanisms involved,” said Brito, who is currently a professor at Oregon Health & Science University’s Oregon Institute of Occupational Health Sciences in the United States, and continues to investigate the topic via circadian rhythm studies.

Baroreflex sensitivity regulates each heartbeat interval and controls autonomic activity throughout the organism.

“It’s a mechanism that involves sensitive fibres and deformations in the walls of arteries in specific places, such as the aortic arch and carotid body. When blood pressure falls, this region warns the brain region that controls the autonomic nervous system, which in turn signals the heart to beat faster and tells the arteries to contract more strongly. If blood pressure rises, it warns the heart to beat more slowly and tells the arteries to contract less. In other words, it modulates arterial pressure beat by beat,” Brito explained.

In previous studies, the EEFE-USP research group showed that evening aerobic training reduced blood pressure more effectively than morning training in hypertensive men (read more at: agencia.fapesp.br/34194), and that the more effective response to evening training in terms of blood pressure control was accompanied by a greater reduction in systemic vascular resistance and systolic pressure variability (read more at: agencia.fapesp.br/37432).

“Replication of the results obtained in previous studies and in different groups of hypertensive patients, associated with the use of more precise techniques to evaluate the main outcomes, has strengthened our conclusion that aerobic exercise performed in the evening is more beneficial to the autonomic nervous system in patients with hypertension. This can be especially important for those with resistance to treatment with medication,” Brito said.

Continue Reading

News

Revolutionising cancer treatment: intracellular protein delivery using hybrid nanotubes

Published

on

Revolutionising cancer treatment: intracellular protein delivery using hybrid nanotubes

A new hybrid nanotube stamp system has been developed which revolutionises precision medicine with high efficiency and cell viability rates for cancer treatment.

Precision medicine and targeted therapies are gaining traction for their ability to tailor treatments to individual patients while minimising adverse effects. Conventional methods, such as gene transfer techniques, show promise in delivering therapeutic genes directly to cells to address various diseases.

However, these methods face significant drawbacks, hindering their efficacy and safety. Intracellular protein delivery offers a promising approach for developing safer, more targeted, and effective therapies. By directly transferring proteins into target cells, this method circumvents issues such as silencing during transcription and translation and the risk of undesirable mutations from DNA insertion. Additionally, intracellular protein delivery allows for precise distribution of therapeutic proteins within target cells without causing toxicity.

A group of researchers led by Professor Takeo Miyake at Waseda University, Japan in collaboration with the Mikawa Group at the RIKEN Institute have now developed a hybrid nanotube stamp system for intracellular delivery of proteins. This innovative technique enables the simultaneous delivery of diverse cargoes, including calcein dye, lactate oxidase (LOx) enzyme, and ubiquitin (UQ) protein, directly into adhesive cells for cancer treatment.

The researchers explored the therapeutic potential of delivering LOx enzyme for cancer treatment. “Through our innovative stamp system, we successfully delivered LOx into both healthy mesenchymal stem cells (MSC) and cancerous HeLa cells. While MSC cells remained unaffected, we observed significant cell death in HeLa cancer cells following LOx treatment with viabilities decreasing over time. Our findings highlight the promising efficacy of intracellularly delivered LOx in selectively targeting and killing cancer cells, while sparing healthy cells, offering a targeted therapeutic strategy for cancer treatment,” explains Miyake.

Finally, the team successfully delivered 15N isotope-labeled UQ proteins into HeLa cells using the HyNT stamp system. This delivery allowed for the analysis of complex protein structures and interactions within the cells. In addition, optical and fluorescence imaging confirmed the presence of delivered UQ in HeLa cells, and nuclear magnetic resonance spectroscopy matched the intracellular UQ protein concentration with that of a solution containing 15N-labeled UQ. These results demonstrate the effectiveness of the stamp system in delivering target proteins for subsequent analysis.

The results demonstrate the remarkable capability of the HyNT stamp system in delivering LOx and UQ into a substantial number of adhesive cells, as required for regenerative medicine applications. The system achieved a notably high delivery efficiency of 89.9%, indicating its effectiveness in transporting therapeutic proteins into the target cells with precision. Moreover, the cell viability rate of 97.1% highlights the system’s ability to maintain the health and integrity of the treated cells throughout the delivery process.

The HyNT stamp system offers transformative potential in intracellular protein delivery, with applications spanning from cancer treatment to molecular analysis. Beyond medicine, its versatility extends to agriculture and food industries, promising advancements in crop production and food product development. With precise cell manipulation and efficient delivery, the HyNT stamp system is poised to revolutionize biomedical research, clinical practice, and diverse industries, paving the way for personalized interventions and shaping the future of modern medicine.

Continue Reading

Trending